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INVITED ARTICLE

The pumping phenomenon in smectic C* liquid crystals

I.W. Stewart*

Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK

(Received 4 May 2010; accepted 7 May 2010)

It is known from experiments that smectic C* liquid crystals arranged in a bookshelf geometry between two parallel
glass plates can exhibit a pumping phenomenon under the application of an electric field when the lower plate is
fixed and the upper plate is allowed the possibility of some movement. This phenomenon, which reflects a change in
the cell thickness via mechanical vibrations of the top plate, is known to occur when the direction of an applied
electric field is suddenly reversed. An elementary model is developed that describes some of the key features of this
effect and is directly relevant to the observations reported in the literature. Two aspects are considered: first, the
effect of a simple field reversal, and secondly, the frequency-induced effects of an alternating electric field. A steady
increase in the cell thickness occurs under alternating fields and this reflects a pumping phenomenon as the director
orientation couples to the flow.

Keywords: ferroelectric liquid crystals; smectic liquid crystals; pumping; backflow

1. Introduction

There has been great interest in recent years in ferro-

electric liquid crystals, largely due to the possible lin-
ear coupling between the spontaneous polarisation

and the electric field [1]. It is this coupling, combined

with flow, that will be investigated here in relation to

reported experiments on the electromechanical effects

that arise via flow-induced movements of the liquid

crystal boundary plates.

It is known that bookshelf aligned ferroelectric

smectic C* (SmC*) liquid crystal samples can exhibit
lateral mechanical vibrations under the influence of an

applied alternating electric field when the lower sam-

ple plate is fixed and the upper plate is free to move, as

reported by Jákli et al. [2], Jákli and Saupe [3] and Jákli

[4]. These vibrations are parallel to both the smectic

layers and the boundary plates and perpendicular to

the electric field. When both plates are fixed, Zou and

Clark [5] observed that a pumping flow of the SmC*
liquid crystal can be induced by an alternating electric

field: the liquid crystal has flow parallel to the bound-

ary plates within the planes of the smectic layers.

There is also a similar pumping phenomenon discov-

ered by Jákli and Saupe [6] that can lead to a steady

increase in the sample thickness when the upper plate

is free to move and the applied alternating field is

above a critical frequency; in contrast to the aforemen-
tioned references, when this happens the upper plate

vibrates predominantly vertically rather than laterally

and a steady increase in the vertical sample thickness

occurs and is maintained as fluid is pumped in the

direction of the oscillating field. Jákli and Saupe [7]

reported that vertical vibrations can also be induced

by a fast electric field reversal and it is this phenom-

enon that is to be modelled here. A simple fast field

reversal is first considered and then the effects of an
alternating field are explored. The model equations

may be adapted [8] to refine the continuum model

used in [6] in order to deliver on explanation for

what must be a non-zero time average of the pressure,

a result which was absent in [6] because the coupling of

the director motion to flow was neglected. The work

described here delivers a non-zero time average for the

pressure when flow is incorporated.
Section 2 describes the model problem. The two

main governing equations, 28 and 29, are derived in

Section 3 while solutions and comparisons with experi-

mental data are presented in Section 4. The article

closes with a discussion of the results in Section 5.

2. Model description

The description of SmC* liquid crystals will follow the

standard notation used in [9, 10]. The average orienta-
tion of the molecular long axes of a liquid crystal is

described by the unit vector n, called the director.

SmC* liquid crystals are known to form equidistant

layers where the director n within each layer is tilted by

an angle � with respect to the unit layer normal a, as

shown in Figure 1(a), which displays the set-up of

what is commonly called a smectic bookshelf align-

ment when the smectic layers are arranged
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perpendicular to the boundary plates. The director can

maintain this relative tilt to the smectic layers while

being free to rotate around the surface of a fictitious

cone of semi-vertical angle �, referred to as the smectic

cone angle, shown in Figure 1(b).

It will be assumed throughout that � is a fixed

constant so that the incompressible smectic conti-
nuum theory of Leslie et al. [11] is applicable. This is

motivated by the observations in [5, 6] where the

smectic interlayer spacing remained fixed. It is math-

ematically convenient to introduce two other vectors

for a complete description of a SmC* liquid crystal: a

unit vector c, often called the c-director, which is the

unit orthogonal projection of n onto the smectic

planes, and the unit vector b ¼ a � c. Ferroelectric
liquid crystals are chiral liquid crystals that have a

twist axis perpendicular to the smectic layers and, in

general, they possess a spontaneous polarisation, P,

which, in terms of the model introduced here and

displayed in Figure 1(b), can be written as a vector

parallel to the vector b, so that

P ¼ P0b; P0 > 0; (1)

when the sign of P0 is taken to be positive, following

the usual sign convention of Clark and Lagerwall [12].

It will always be assumed in this article that P0 . 0 for

the SmC* material under discussion; in these circum-

stances, P will prefer to align parallel with a positive

electric field, as detailed later. The vectors b and c are
orthogonal to each other and always lie in the plane of

the smectic layers, perpendicular to a as shown in

Figure 1(b). In the absence of dislocations it is well-

known that the smectic layer normal, a, is subject to

the constraint �� a ¼ 0 [13]. This constraint is auto-

matically satisfied when a ¼ bx for planar layers as

pictured in Figure 1(a). For fixed planar aligned layers

the orientation of the c-director can be described by

introducing the phase angle f, which is defined to be

the angle between the c-director and the y-axis mea-

sured in the positive direction, as shown in Figure 1.

For the model equations introduced in the next sec-

tion, it will be supposed that f is a function of time

only. The continuum theory uses the vectors a and c

and thereby provides a complete description for the
alignment of P since its orientation angle relative to

the y-axis is always fþ p=2 rad in this framework.

The problem to be investigated consists of a book-

shelf arrangement of the smectic layers depicted in

Figure 1(a) that has been motivated by the experimen-

tal results described in [4, 6, 7]. The smectic layers are

perpendicular to two parallel glass plates placed initi-

ally at a sample depth, h0, apart in the z-direction, a
being parallel with the x-axis. The lower plate is fixed

and the upper plate is free to move. The width of the

sample in the y-direction is initially w0 and the sample

depth in the x-direction will be assumed fixed at x0.

Initially, an electric field is applied across the plates in

the negative z-direction as shown in Figure 1(c), where

it is supposed in this problem that the ferroelectric

liquid crystal will be in its unwound state, that is, its
inherent helical pitch is suppressed by a field of a

suitable magnitude that essentially allows the (quad-

ratic) dielectric electric field contribution to be

neglected yet permits a linear electric field response

linked to P, as will be seen later. One possible initial

equilibrium state at time t ¼ 0 is shown in Figure 1(c)

where the electric field is E ¼ �Ebz with E ¼ jEj and

f ¼ p. For t . 0 the electric field is then reversed so
that E ¼ Ebz. This can lead to a field-induced change in

the sample as shown schematically in Figure 2 for a

single representative smectic layer.

The initial representative layer at t ¼ 0 has height

h0 and width w0, as pictured in Figure 2(a). The liquid

crystal has a fixed smectic interlayer spacing and the

fluid is assumed to be incompressible. If the height of

(a) (b) (c)

Figure 1. (a) The unwound structure of a bookshelf aligned SmC* liquid crystal. The short, bold lines represent the local
alignment of the director when it is tilted at a fixed angle � relative to the local smectic layer normal. (b) The local geometrical
description of the director n, layer normal a, spontaneous polarisation P and the vector c, the unit orthogonal projection of the
director upon the smectic planes. n is tilted at a fixed angle � to the layer normal a ¼ bx. The angle f describes the orientation of c
within the plane of the layers relative to the y-axis. (c) One possible initial configuration when an electric field is applied in the
negative z-direction so that P is aligned with the field and the corresponding orientation angle of c is f ¼ p.
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the smectic layer increases or decreases then the width

must decrease or increase accordingly in order to pre-

serve the volume after a field reversal. Effectively, per

unit depth in the x-direction, the area of the smectic

layer must remain constant in order to maintain the

same volume of material. To a first approximation,

the area shapes before and after a field reversal can be
assumed to be rectangular. Any changes in height and

width will be driven by flow effects coupled to the

reorientation of the polarisation with the electric

field and will be detected as vertical vibrational dis-

placements to the upper boundary plate. The changes

to the height and width may be represented by h0 þ
h(t) and w0 - w(t), respectively, where h(t) and w(t)

are zero at t ¼ 0. Incompressibility therefore leads to
the area in both of the layers pictured in Figure 2 being

preserved. These time-dependent functions are, there-

fore, related and w(t) can be expressed in terms of h(t)

through the relation

wðtÞ ¼ w0hðtÞ
h0 þ hðtÞ : (2)

The governing dynamic equations will be derived

in the next section. It will turn out that there are three

equations to consider: two from the liquid crystal

dynamics and one that arises from a boundary condi-

tion that involves the movement of the upper bound-

ary plate. Of these, one of the liquid crystal equations

will be satisfied by the determined solution for the

pressure, p, which leaves two remaining equations to
be solved simultaneously for the two unknown func-

tions, h(t) and f(t).

3. Governing equations

The basic dynamic theory for SmC liquid crystals was

derived by Leslie et al. [11] and this theory was subse-

quently developed further and interpreted for both

SmC and SmC* by Carlsson et al. [14]. It has been

noted by Jákli et al. [2] that, for the electromechanical

behaviour mentioned above, a continuum theory of
fluids should be used in which the viscous behaviour of

the material plays a more important role then the

elastic properties, an approach that was also adopted

effectively in the model equations used by Jákli and

Saupe [6]. Motivated by these experimental observa-

tions, the elastic effects and boundary conditions for

the director may be neglected in a preliminary investi-

gation such as this. Following the model descriptions
in Figures 1 and 2, under these circumstances for time

t � 0 it is possible to set

a ¼ ð1; 0; 0Þ; (3)

c ¼ ð0; cosf; sinfÞ; (4)

b ¼ ð0;� sinf; cosfÞ; (5)

E ¼ Eð0; 0; 1Þ; (6)

where f ¼ fðtÞ. An example of an initial equilibrium

state is shown in Figure 1(c) and occurs when f ; p
with E ¼ �Ebz so that P ¼ �P0bz before a field reversal

to E ¼ Ebz takes place. It will be supposed that the
velocity v may take the form

v ¼ ð0; kðtÞy;�kðtÞzÞ; (7)

where k(t) is the time-dependent shear rate that is to be

determined. This ansatz for the velocity has been moti-

vated by the review by Leslie [15] and the work of Clark

et al. [16] that examined oscillatory shear effects in
nematic liquid crystals. This form for the velocity satis-

fies the usual incompressibility condition � � v ¼ 0 and

obeys the symmetry requirements that fit with the geo-

metrical description shown in Figure 2(b). For example,

the flow component along the y-axis is odd in y, as is to

be anticipated if both of the vertical boundaries of a

smectic layer are to contract or expand by equal

amounts at the same time. The two unknown functions
to be determined in the model are, therefore, the angle,

f(t), and the shear rate, k(t). However, the vertical

velocity of the upper plate at z ¼ h0 þ hðtÞ is clearly

given by dh=dt and so this boundary condition allows

the shear rate to be expressed in terms of h(t) and its

derivative via the requirement

kðtÞ ¼ � dh

dt
h0 þ hðtÞ½ ��1: (8)

Thus solutions to the problem can be expressed in

terms of the orientation angle f(t) of the c-director

and the vertical displacement h(t) of the upper

boundary plate, quantities that are directly relevant
to experimental observations via the representation

in Figure 2, bearing in mind that w(t) can be deter-

mined through the relation 2. The ansatz for the

z-component of the velocity, v3, satisfies the usual

no-slip boundary condition at z ¼ 0 and matches

the velocity of the upper plate at z ¼ h0 þ hðtÞ, as is

to be expected. However, the y-component of the

velocity is not necessarily zero at the boundary plates
in this ansatz. Nevertheless, this may not be a major

concern since the velocity obeys an acceptable sym-

metry across the xz-plane and serves as a fair approx-

imate form for the anticipated flow behaviour. It is

also noted here that when flow couples to the director

orientation it is often referred to as backflow in the

liquid crystal literature.
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The incompressible dynamic theory for SmC*

[10, 11] requires that a, b and c are mutually orthogo-

nal unit vectors with �� a ¼ 0 and that the velocity

satisfies the incompressibility requirement � � v ¼ 0.

All of these constraints are satisfied in this model.

The remaining dynamic equations of relevance are

those arising from the balance of linear momentum
and the balance of angular momentum related to the

c-director; the remaining angular momentum balance,

related to the layer normal, is easily fulfilled by a

suitable selection of vector Lagrange multiplier

because the layers are fixed, obtained by the method

outlined in [10, p266]. The usual Cartesian suffix nota-

tion will be used, where a comma denotes partial

differentiation with respect to the variable it precedes
and repeated suffixes are summed from 1 to 3. The

general linear momentum balance equation in the

absence of director gradients can be obtained directly

from the general theory [10, 11] and is given by

r _vi ¼ rFi � p;i þ~tij;j ; (9)

where r is the density of the liquid crystal, F is the

external body force per unit mass and p is the pressure.

The general form for the viscous stress tensor, ~tij, is

given in the Appendix. A superposed dot represents
the material time derivative, D=Dt, defined by

D

Dt
¼ @

@t
þ vi

@

@xi

: (10)

Similarly, from the general formulation, the angular

momentum balance for the c-director leads, again in

the absence of director gradients, to

� @w

@ci

þ ~gc
i þ tci þ mai ¼ 0 ; (11)

where the scalar functions t and m are Lagrange multi-

pliers (arising from the aforementioned constraints on

a and c). For this study, the energy density, w, consists

of that related to the spontaneous polarisation only
and is given, in terms of a and c [10], by

w ¼ �P � E ¼ �P0 a� cð Þ � E ¼ �P0E cosf (12)

and therefore, in terms of the usual alternator eijk,

� @w

@ci

¼ �P0eijkajEk : (13)

The dynamic contribution ~g
c

is

~gc
i ¼ �2 l2Dc

i þ l5Ci þ t1Da
i þ t5Ai

� �
; (14)

where l2, l5, t1 and t5 are viscosity coefficients and the

components Ai, Ci, Da
i and Dc

i are given by

Ai ¼ _ai �Wikak ; Ci ¼ _ci �Wikck ;

Da
i ¼ Dijaj ; Dc

i ¼ Dijcj;
(15)

where Dij and Wij are the usual rate of strain tensor

and vorticity tensor, respectively, defined by

Dij ¼ 1
2
ðvi;j þ vj;iÞ ; Wij ¼ 1

2
ðvi;j � vj;iÞ : (16)

The vectors A and C are the co-rotational time fluxes for

a and c, respectively. The main dynamic equations for
the liquid crystal are, therefore, given by Equations 9

and 11, which will now be discussed in detail.

The external body force per unit mass of liquid

crystal is F ¼ �gbz where g is the acceleration due to

gravity. Noting that the divergence of the viscous

stress is zero (because ~tij does not contain any contri-

butions that depend upon the spatial coordinates),

straightforward calculations show that the equations
in 9 are

p;x ¼ 0; p;y ¼ �ry k2ðtÞ þ dk

dt

� �
;

p;z ¼ �rz k2ðtÞ � dk

dt

� �
� rg:

(17)

These equations are solved by setting the pressure p to

p ¼ � 1

2

dk

dt
r y2 � z2
� �

� 1

2
r y2 þ z2
� �

k2ðtÞ
þ rg h0 � zð Þ þ p0 ;

(18)

where p0 is the force per unit area exerted by the upper

boundary plate upon the fluid sample. When t < 0,

k ; 0, f ; p=2 and p ¼ rgðh0 � zÞ þ p0. The solution

18 for p solves the linear momentum equations and it

only remains at this stage to examine the angular

momentum equations. For the forms stated in
Equations 3–5 it is seen that, for v given by Equation 7,

A ¼ 0 ; C ¼ df
dt

0;� sinf; cosfð Þ;

Da ¼ 0 ; Dc ¼ kðtÞ 0; cosf;� sinfð Þ:
(19)

With the aid of these results and Equation 13, it is seen

that by taking the scalar product of Equation 11 with a
that m ¼ �~gc� a and, therefore, the first equation in

Equation 11 is satisfied for this identified value of the

multiplier m. The remaining two equations from

Equation 11, after appropriate substitutions using

the results in Equations 13, 14 and 19, are

802 I.W. Stewart
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P0E � 2l2kðtÞ cosfþ 2l5
df
dt

sinf

þ t cosf ¼ 0;

(20)

2l2kðtÞ sinf� 2l5
df
dt

cosfþ t sinf ¼ 0: (21)

The multiplier t can be eliminated from these expres-
sions by multiplying Equation 20 by sinf and

Equation 21 by cosf and subtracting, to leave the

single equation

2l5
df
dt
¼ �P0E sinfþ 4l2kðtÞ sinf cosf : (22)

The three angular momentum equations in Equation 11,

therefore, reduce to finding the solution of Equation 22. In

summary, the liquid crystal dynamic Equations 9 and 11

effectively reduce to the solution of Equation 22 for the

unknown functions k(t) and f(t).

The remaining equation that controls the motion

of the system is that for the acceleration of the upper
boundary plate. In the absence of director gradients,

the stress tensor for the liquid crystal is [10, 11]

tij ¼ �p�ij þ~tij (23)

and, therefore, adopting the standard convention for

surface forces, the force per unit area exerted by the

fluid upon the upper boundary plate is ti ¼ tij�j, where

n is the inward unit vector normal to the sample at the

upper boundary and ti is evaluated at z ¼ h0 þ hðtÞ.
Therefore, ti ¼ �ti3 in this particular case. The only
component of this force that is relevant to this model is

the vertical force upon the plate, namely, t3 ¼ �t33.

The sum of this force exerted by the fluid upon the

plate and the force exerted by the plate upon the fluid

must be equal to the product of the mass per unit area

of the upper boundary plate, rp , multiplied by its

acceleration €hðtÞ, by Newton’s second law. This is a

legitimate approximation since the upper plate can be
initially considered as floating on the fluid so that this

buoyancy approach to the dynamics is valid (initially

the pressure difference at the boundary interface is

zero and the plate is at rest). Thus, at z ¼ h0 þ hðtÞ,
we have the moving boundary condition

rp

d2h

dt2
¼ �t33 � p0 : (24)

Inserting the quantities from Equations 16 and 19 into

the viscous stress tensor, ~tij, stated in the Appendix

shows that

~t33 ¼ �kðtÞ½m0 þ m3 sin2 fðsin2 f� cos2 fÞ

þ 2m4 sin2 f� þ 2l2
df
dt

sinf cosf:
(25)

Hence, by Equations 18, 23 and 25, the right-hand side

of Equation 24 is

�t33� p0 ¼�
1

2

dk

dt
rðy2� z2Þ� 1

2
rðy2þ z2Þk2ðtÞ

þrgðh0� zÞ þkðtÞ½m0þm3 sin2fðsin2f� cos2fÞ

þ 2m4 sin2f � � 2l2
df
dt

sinfcosf ; (26)

where the right-hand side is to be evaluated at

z ¼ h0 þ hðtÞ. However, k(t) is connected to h(t) via

the relation 8 and thus the key two model Equations 22

and 26 can be expressed in terms of the two physically

relevant unknown functions f(t) and h(t). Thus, upon

making this substitution in Equation 26 for k(t) in

terms of h(t) and its derivative and evaluating the

expressions at z ¼ h0 þ hðtÞ, Equation 26 becomes

� t33 � p0 ¼
1

2
r
�

y2½h0 þ hðtÞ��1 � ½h0 þ hðtÞ�
�

d2h

dt2

� ry2½h0 þ hðtÞ��2

�
dh

dt

�2

� dh

dt
½h0 þ hðtÞ��1

� ½m0 þ m3 sin2 fðsin2 f� cos2 fÞ þ 2m4 sin2 f �

� 2l2
df
dt

sinf cosf� rghðtÞ : (27)

Each side of Equation 24 has dimensions of force per

unit area. Both sides of this expression can be inte-

grated over the region 0 � x � 1, �ðw0 � wðtÞÞ=2

� y � ðw0 � wðtÞÞ=2, that is, over an area of unit

length in the x-direction and of length w0 � wðtÞ in

the y-direction, motivated by the geometry in
Figure 2(b). Recall that the distance w(t) can be

expressed in terms of h(t) via the relation 2 and so

w0 � wðtÞ ¼ w0h0=ðh0 þ hðtÞÞ. Substituting Equation

27 into 24, carrying out this integration and then

dividing both sides by w0 � wðtÞ leads to

rp

d2h

dt2
¼ 1

2
rf 1

12
w2

0h2
0½h0 þ hðtÞ��3 � ½h0 þ hðtÞ� d2h

dt2
g

� 1

12
rw2

0h2
0½h0 þ hðtÞ��4

�
dh

dt

�2

� dh

dt
½h0 þ hðtÞ��1½m0 þ m3 sin2 fðsin2 f� cos2 fÞ

þ 2m4 sin2 f � � 2l2
df
dt

sinf cosf� rghðtÞ : ð28Þ

Finally, substitution for k(t) in terms of h in Equation 22

gives

Liquid Crystals 803
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2l5
df
dt
¼ �P0E sinf

� 4l2
dh

dt
h0 þ hðtÞ½ ��1

sinf cosf : (29)

Thus the two coupled dynamic equations that need to

be solved for f(t) and h(t) are given by Equations 28

and 29 and it is these Equations that we consider in the

next section.

4. Solutions

Equations 28 and 29 have been solved numerically using

Maple [17] for the typical material parameters listed in

Table 1. The initial conditions were first set to be

fð0Þ ¼ 3:141 rad ; hð0Þ ¼ 0 ;
dh

dt
¼ 0 ; (30)

motivated by the initial configuration pictured and dis-

cussed in Figure 1(c). An initial small displacement to

the f ; p state has been presupposed in order to initi-
ate a small perturbation to generate a non-constant

solution. The field, E, is then set to 106 V m-1 for

these conditions and solved numerically. The results

are shown in Figure 3.

As perhaps expected, the orientation angle f tends

to zero as the spontaneous polarisation aligns with the

direction of the field, as shown in Figure 3(a). The

corresponding displacement h(t) and acceleration
d2h=dt2 of the upper plate are plotted in Figures 3(b)

and (c). The system approaches its new equilibrium

state within a timescale of around 1 ms, which is in

agreement with the observed timescales reported in [7].

The displacement h(t) of the upper plate settles to a

positive value, indicating that there is an increase to

the sample depth after the electric field is suddenly

reversed and maintained. Also, there is an initial posi-

tive acceleration of the plate which then reverses sign

before tending to zero. This matches the qualitative
behaviour for the experimental acceleration given in

[4, 7], although the data in these articles had decaying

periodic oscillations occurring over the same timescale

as that presented in Figure 3(c). There are, therefore,

two features in this present model that are of impor-

tance: the first is the increase in sample thickness

through a reversed field and the second is the beha-

viour of the acceleration of the plate. An increase in
sample thickness can, therefore, be modelled within

the context of the continuum theory used here.

Although the increase in h in Figure 3(b) is small (of

the order 10-9 m), it is nevertheless significant, as will

be discussed later when an alternating field is

considered.

It is natural at this point to consider an initial state

with the field reversed from the stated value of E to –E

when f ; 0 and the other initial conditions remain as

in Equation 30. As before, a small initial disturbance

to the orientation angle is required to initiate a non-

constant solution and so fð0Þ ¼ 0:001 rad was used in

the numerical calculations. The results are shown in

Figure 4 and the timescale for f and h to reach their

equilibrium states is the same as in Figure 3.

(a) (b)

Figure 2. The geometrical description of a single
representative SmC* layer under a fast electric field reversal.
(a) At t ¼ 0 the representative incompressible layer has height
h0 and width w0. (b) Under a field reversal the top plate may
move, leading to a change in shape of the sample. To maintain
a fixed volume of fluid the area of the representative layer must
effectively remain constant for incompressible SmC*. Any
increase in the height must be accompanied by a
corresponding decrease in the width so that the relation in
Equation 2 holds.

Table 1. Typical material parameters discussed in the text
and used in numerical calculations. The values for h0, w0, P0

and E have been taken from Jákli and Saupe [7]. The
viscosity coefficients have been estimated from data
available for smectic liquid crystals and have been selected
to ensure that basic a priori inequalities that involve
combinations of viscosities have been satisfied [10,
pp 300–301]. The density r is typical for a liquid crystal
while rp has been based on an estimate of 30 g for the total
mass of an upper plate of area 9 cm2, as used in [7].

Parameter Typical value

h0 5 � 10-6 m

w0 3 � 10-2 m

P0 10-3 C m-2

E 106 V m-1

m0 0.0400 Pa s

m3 0.0200 Pa s

m4 0.1083 Pa s

l2 0.0625 Pa s

l5 0.0300 Pa s

r 1020 kg m-3

rp 33 kg m-2
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Through a similar mechanism, the c-director

orientation angle, f, tends to p so that the sponta-

neous polarisation aligns with the field. However,

there is a positive increase in the sample depth and

the acceleration of the upper plate is very similar to
that in Figure 3. This may mean that a continued

periodic reversal of the field will induce a periodic

oscillation of the polarisation and a continuous

increase in the sample thickness, that is, an oscillating

field could cause a build-up in sample thickness.

Therefore, an increase in the sample thickness does

not depend on the direction of the field reversal: this

important feature was also noted by Jákli and Saupe
[7], despite their observation of an initial decrease

before an increase in the thickness (possibly due to

the sample being close to the SmC*–SmA transition

temperature) that was independent of the field direc-

tion. An increase in sample thickness induced by cri-

tical oscillating electric fields while the smectic

interlayer spacing remains constant has been reported

in [6] and the results presented here show that this may
well be feasible within the present basic model. After a

period of time, the sample thickness may increase

significantly, as has been observed experimentally in

[6]. The present theoretical model supports this obser-

vation and demonstrates that it can be driven by flow

coupled to the reorientation of the spontaneous

polarisation.

With this in mind, after some elementary experi-
mentation with an alternating field of the form

E ¼ E cosð2pftÞbz ; (31)

with f ¼ 320 Hz and the initial conditions and para-

meter values given in Equation 30 and Table 1, solu-

tions to Equations 28 and 29 for f, h and the
acceleration of the upper plate were evaluated numeri-

cally. The value for f is close to that used for the model

in [6]. The results are presented in Figure 5; many
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Figure 3. Solutions to Equations 28 and 29 for the
orientation angle, f(t), of the c-director and displacement
h(t) of the upper boundary plate subject to the initial
conditions in Equation 30 and the parameters listed in
Table 1. (a) f(t) tends to the zero equilibrium state in
around 1 ms. (b) h(t) increases and reaches a steady state
within 1 ms. (c) The acceleration of the upper plate.
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Figure 4. Solutions to Equations 28 and 29 for the
orientation angle f(t) of the c-director and displacement
h(t) of the upper boundary plate subject to the same initial
conditions as in Equation 30 for h(t) but now with
fð0Þ ¼ 0:001 rad. The parameters listed in Table 1 were
used except that here the electric field has been reversed to
E ¼ �10�6 V m-1. (a) f(t) tends to the equilibrium state p in
around 1 ms. (b) h(t) increases and reaches a steady state
within 1 ms. (c) The acceleration of the upper plate. The
results in (b) and (c) are very similar to the corresponding
results in Figure 3, despite a reversal in the sign of the electric
field.
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similar plots can be determined for various sets of

material parameters and initial conditions.

The plot in Figure 5(a) shows that the polarisation

tends to its original orientation while, as predicted

from the previous results, the displacement of the

upper plate, shown in Figure 5(b), continues to

increase steadily in a pumping fashion and, moreover,
approaches a constant equilibrium value at about 20

ms. The graph of the acceleration of the upper plate,

d2h=dt2, appears in Figure 5(c) and has the same qua-

litative behaviour as the data plots from experiments

for a fast field reversal, presented in [4, 7], except that

the magnitude of the acceleration is much smaller in

what appears here. The crucial feature is really the

steady increase in the sample thickness until it reaches
a positive equilibrium state as presented in Figure 5(b).

This phenomenon is qualitatively what is known to

happen in SmC* samples in this geometry as reported

by Jákli and Saupe [6] and occurs under oscillating

low-frequency electric fields: there is a steady growth

in the sample thickness until it reaches an increased

constant depth. Although the predicted eventual dis-

placement in Figure 5(b) is relatively small, it is quali-
tatively similar to the experimental results. In [6], the

final displacement for a sample of initial depth 8 mm

was about 300 nm and this is about one order of

magnitude greater than that predicted in Figure 5(b).

The basic theoretical model in [6] cannot explain this

phenomenon and it is only when the rotation of the

spontaneous polarisation is coupled to flow that it

can be detected theoretically, as has just been
demonstrated.

The time taken for the displacement, h(t), to reach

its positive equilibrium state will vary as the amplitude

and frequency of the field varies. The influence of the

material parameters will also be crucial. All these fac-

tors will contribute to the final value for the vertical

displacement, h(t), that is induced by this pumping

phenomenon. More realistic fits with experimental
data may be possible by extending the model equa-

tions, for example, to include smectic elastic constants,

anchoring conditions and the surface tension at the

vertical walls of the sample, or by taking a more

sophisticated approach to the modelling of the velo-

city. The pumping effect is particularly sensitive to the

frequency of the electric field. Experimentally, there is

a critical frequency, fc, at which the onset of pumping
occurs and the upper plate begins to rise [6]. A theore-

tical determination of fc has been given by Carlsson

and Stewart [8] and the value of f ¼ 320 Hz used in

Figure 5 is known to be above this threshold for

similar material parameters. The model in [8] also

incorporated elastic effects and strong anchoring con-

ditions on the director at the boundaries in order

to obtain fc, but the approach involved coupled

linearised equations and could only detect the onset

of pumping and could not model the increase in the

field-induced thickness changes that occur for f > fc.

For the parameters used to obtain the results in

Figure 5, it is, nevertheless, possible to gain some

insight into the influence of the frequency of the alter-

nating field used in Equation 31. It would appear from
the numerical results that the displacement h(t)

approaches its final equilibrium state within a time-

scale of about 20 ms. Solutions for different frequen-

cies can be calculated and then evaluated at t ¼ 20 ms

in order to obtain a feasible estimate for the depen-

dence of the final boundary plate displacement upon

the frequency. The result is shown in Figure 6.

It is clear that the eventual displacement in h is
frequency dependent, as is known from experiments

[6]. Moreover, this particular system is more sensitive
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Figure 5. Solutions to Equations 28 and 29 for the
orientation angle f(t) of the c-director and displacement
h(t) of the upper boundary plate subject to the initial
conditions in Equation 30. The parameters listed in Table 1
were used except that here the electric field has been replaced
by the alternating field stated in Equation 31. (a) f(t)
manoeuvres to maintain its equilibrium state p and
achieves its steady state after around 20 ms. (b) h(t)
steadily increases and reaches a steady state within 20 ms.
(c) The acceleration of the upper plate. These results show
that there is a pumping phenomenon that drives a steady
increase in the sample thickness through increases in the
boundary displacement, h(t).
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to lower frequencies and this, again, is in accord with

experimental observations [6] and previous theoretical

results [8].

5. Discussion

This article has derived governing equations that can

model a field-induced pumping phenomenon in SmC*

liquid crystals when the upper boundary plate of a

bookshelf aligned sample is free to move. The main

dynamic Equations 28 and 29 were solved numerically

for the typical material parameters in Table 1 and

displayed in Figures 3–6. In a simple sudden electric

field reversal the director reorients through p rad as
the spontaneous polarisation aligns with the field and

this is accompanied by a small increase in the sample

thickness and a small vibration to the upper boundary,

as shown in Figures 3 and 4, an increase that is inde-

pendent of the direction of the field. When an alter-

nating field is applied the director can reorient and

tend to its original position accompanied by mechan-

ical vibrations of the upper plate and a steady rise in
the sample thickness. It is this steady increase that is of

importance because it demonstrates theoretically the

possibility of a pumping effect where there is a build-

up in sample thickness as the upper plate continuously

rises to a new equilibrium level that is maintained

under the application of an alternating field. This

phenomenon is in accord with the experimental obser-

vations of Jákli and Saupe [6], whose preliminary
model could not account for this mechanical beha-

viour but whose data revealed a vertical displacement

of the upper plate at a voltage of V ’ h0E ¼ 5 V, as

used here. These vertical displacements are in qualita-

tive agreement with the theoretical predictions for h(t)

in Figures 3–5. The pumping effect is sensitive to the

frequency of the alternating field and the dependence

of an approximation to the final boundary displace-
ment upon the frequency has been shown in Figure 6.

Further, the pumping effect under a simple fast field

reversal, such as that applied here, is known to occur

over timescales of the order of 1 ms [7] and this is

compatible with the model results presented in

Figures 3 and 4. One discrepancy in this model in

relation to experimental evidence is the magnitude of

the acceleration of the upper boundary under a field

reversal. As mentioned in Section 4, this may be due to

approximating conditions that have been implemen-

ted in this work. Surface tension at the vertical sides of
the sample and anchoring conditions for the director

on the boundaries, which have been neglected here,

will play prominent roles. However, there are two

approximations that were introduced that have possi-

bly been more influential on the results: the first was to

neglect the elasticity of the liquid crystal because of the

reported dominance of viscous effects [2] and the sec-

ond was to invoke a particular ansatz for the velocity.
The flow component in the y-direction possibly needs

a more elaborate ansatz, or perhaps the velocity could

be determined in a more precise way through what will

obviously be quite substantially more complicated

dynamic equations. Modification of these two parti-

cular assumptions should be seen as the next step

towards a more refined model. In any event, the ana-

lysis in this article should be seen as a first basic
approach that captures some of the essential experi-

mental features and it is clear that the problem

deserves to be investigated in a more sophisticated

manner.

One feature worth commenting on is the role of the

viscosity coefficient l2. Experimental values for l2 are

only known in relation to combinations of other visc-

osities [10, 18, 19]. The sign of this viscosity could be
positive or negative and may depend on the particular

material (it is well-known in nematic liquid crystals,

for example, that some viscosity coefficients have dif-

ferent signs for different materials). It has been seen

that the pumping phenomenon occurs for l2 > 0;

however, when the numerical procedures are repeated

for values of l2 that are negative yet remain consistent

with all the necessary a priori inequalities in relation to
the other viscosities, the pumping phenomenon may

lead to a decrease in the sample thickness or, in many

instances, to solutions for h(t) that fail to be deter-

mined beyond a very short time interval. It would

appear that a positive value for l2 encourages a steady

increase in the sample thickness under oscillating elec-

tric fields. Changes to the other viscosities do not have

such a dramatic effect.
One major difference in the modelling of field-

induced sample thickness changes used by Jakli [4]

and Jákli and Saupe [7] is a proposed expansion and

contraction in the smectic interlayer spacing. In com-

mon with the models introduced in [5, 6] and in agree-

ment with the incompressible continuum smectic

theory [10, 11], changes in the smectic interlayer spacing

were not supposed in this article. The introduction of
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Figure 6. The dependence of the displacement h of the
upper boundary plate evaluated at t ¼ 20 ms as the
frequency f of the electric field is varied.
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such interlayer changes may be modelled by a more

extensive continuum theory that allows compressibility

of the layers, such as that recently introduced for smec-

tic A liquid crystals [20]. This may lead to a more

intricate analysis of general pumping phenomena in

smectic liquid crystals.

As noted in [4], electric field-induced mechanical
vibrations and related effects may have practical

applications in the area of electromechanical transdu-

cers which can form the key elements of possible

intelligent materials [21]. The pumping effect in ferro-

electric liquid crystals can also be used in micromani-

pulation methods. Using backflow in a ferroelectric

liquid crystal and adjusting the polarity and frequency

of an applied electric field, a net movement of micro-
particles has been achieved by Mieda and Furutani

[22, 23]. Such micromanipulation techniques may be

suitable for the precise manipulation of microparticles

that would otherwise be difficult to manoeuvre, such

as microlenses or micro-mirrors [23]. The motion of

single micrometre-sized glass spheres in SmC* liquid

crystals was investigated experimentally by Dierking

et al. [24], who described the electromigration of such
particles as almost certainly caused by backflow, pos-

sibly due to a mass pumping phenomenon. It is per-

haps also worth adding that, in the context of

ferroelectric liquid crystalline elastomers, Madden

et al. [25] have written a review that discusses the

electrically-induced displacements of these materials

in the area of possible actuator technologies.
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Appendix

The general expression for the viscous stress,~tij, for the

SmC* phase can be written as

~tij ¼ ~ts
ij þ~tss

ij ; (A:1)

where~ts
ij and~tss

ij are the symmetric and skew-symmetric

parts of the viscous stress given by [10, 11]

~ts
ij ¼ m0Dij þ m1apDa

paiaj þ m2ðDa
i aj þDa

j aiÞ
þ m3cpDc

pcicj þ m4ðDc
i cj þDc

j ciÞ
þ m5cpDa

pðaicj þ ajciÞ þ l1ðAiaj þ AjaiÞ
þ l2ðCicj þ CjciÞ þ l3cpApðaicj þ ajciÞ
þ k1ðDa

i cj þDa
j ci þDc

i aj þDc
j aiÞ

þ k2½apDa
pðaicj þ ajciÞ þ 2apDc

paiaj �
þ k3½cpDc

pðaicj þ ajciÞ þ 2apDc
pcicj �

þ t1ðCiaj þ CjaiÞ þ t2ðAicj þ AjciÞ
þ 2t3cpApaiaj þ 2t4cpApcicj; ðA:2Þ
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~tss
ij ¼ l1ðDa

j ai �Da
i ajÞ þ l2ðDc

j ci �Dc
i cjÞ

þ l3cpDa
pðaicj � ajciÞ þ l4ðAjai � AiajÞ

þ l5ðCjci � CicjÞ þ l6cpApðaicj � ajciÞ
þ t1ðDa

j ci �Da
i cjÞ þ t2ðDc

j ai �Dc
i ajÞ

þ t3apDa
pðaicj � ajciÞ þ t4cpDc

pðaicj � ajciÞ
þ t5ðAjci � Aicj þ Cjai � CiajÞ:

(A:3)

The quantities Ai, Ci, Da
i and Dc

i are defined through the

relations in Equations 15 and 16. There are 20 viscosity

coefficients: the 12 viscosities m0 to m5 and l1 to l6 are

associated with contributions to the dynamic stress

which are even in the vector c or do not contain c,

while the remaining eight viscosities k1 to k3 and t1 to

t5 are linked to the terms which are odd in the vector c.
The viscosity m0 is related to the usual isotropic

Newtonian viscosity � through the relation � ¼ 1
2
m0.
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